
The solution of the system (4.7) reduces to the solution of one nonlinear ordinary 
differential equation with a singularity (of the "saddle" type) [i0]. Hence, obtaining 
the final expressions for the nonstationary relaxing stream parameters flowing perpendicu- 
larly to the wing set up turns out to be considerably more tedious than in case 'b' 

The author is grateful to V. Ya. Neiland for attention to the research. 
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AN EXACT SOLUTION FOR THE INTERACTION OF A SUPERSONIC WEDGE 

WITH THE BOUNDARY BETWEEN TWO GASES 

R. Ya. Tugazakov UDC 533.6.013.2 

It is fairly complicated to examine the interaction of a moving body with inhomogenei- 
ties (shock waves or contact discontinuities) in a gas flow. The problem is a nonlinear 
nonstationary one, in which there is a series of interactions Between the shock waves, con- 
tact discontinuities, and expansion waves. Therefore, only the linear formulation has been 
used in analytic solution in [1-3]. 

In the general case, the solution can be found only numerically [4-6]. Exact solutions 
can be found in certain cases. For example, in [7, 8] there are exact solutions for the 
flow of an incident shock wave around a moving wedge. 

Here we derive a class of exact solutions for the interaction of a wedge moving with a 
supersonic velocity in an ideal gas with the boundary between two gases. The medium is con- 
sidered nonviscous. 

i. We consider a wedge with a semivertex angle 8 (Fig. i) moving with a supersonic ve- 
locity qo in a medium where the pressure, density, and adiabatic parameter are correspondingly 
P0 = i, P0 = I, ?0 ; there is incident on the wedge at some angle 8 to the axis of motion a 
contact discontinuity DBF, where DB is part of the surface of the discontinuity that has 
not yet interacted, BF is the new surface of the discontinuity, ABC is the head shock wave, 
BE is the shock wave reflected from the surface of the contact discontinuity, and ~ is the 
angle formed by the head wave. We examined the flow picture on the upper surface of the 
wedge subject to the condition that the shock wave BE is reflected from the contact discon- 
tinuity. The case with a negative-pressure wave is not considered. 
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Fig. i 

In the general case, the interaction picture is much more complicated than that in Fig. 
1. When the shock wave BC falls on the contact discontinuity BD, the reflected shock wave 
BE in turn is reflected from the surface of the wedge and interacts with the other discon- 
tinuities. The head wave ABC should be refracted at point B. The contact discontinuity BF 
is reflected from the surface of the body as a compression or expansion wave. If on the 
other hand it is required that shock wave BE is perpendicular to the surface of the wedge, 
the velocities will be equal in regions 2 and 3, and wave ABC is not refracted, in which 
case we get the simple flow picture shown in Fig. i. Then the velocity should be supersonic 
in all the regions shown with respect to the coordinate system related to point B. 

We derive the relationship that must be imposed on the flow parameters in regions 0 
and 1 to get the flow picture shown in Fig. i. 

In the region of point B, we have a pattern of overall regular refraction of shock 
wave ABC at the discontinuity DBF. A difference from the theory of ordinary regular shock- 
wave refraction at the boundary of two media [9] is that here there is a velocity disconti- 
nuity at the first contact discontinuity. This introduces an additional arbitrary parameter 
into the refraction problem. One usually employs the following parameters to describe the 
physical state in two regions separated by a contact-discontinuity surface: the ratios of 
the specific heats Yo and 71, the speeds of sound ao and el, and the pressures Po and Pz. 
At equilibrium, Po = Pl. 

Here we incorporate the velocity discontinuity at the interface and use the velocities 
qo and ql also to describe the states of the gas in the two regions. We formulate the prob- 
lem in a coordinate system linked to the triple point B and moving with a constant velocity 
q. The components of this along the x and y axes are 

%sin~.cos~ %sin~.sin~ 
Cz= sin~ ' qY= sin~ " 

Here ~ is the angle of the head shock wave, m is the angle between the interface between 
the two gases and shock wave ABC, and B is the angle formed by the interface with the x 
axis, which coincides with the symmetry axis of the wedge. 

In the subsequent expressions, the values of q and B %n regions 0-4 as calculated in 
the coordinate system linked to the mobile point B will differ from those calculated in the 
coordinate system related to the leading edge of the wedge. 

The flow picture (Fig. l) implies that to solve the problem we need to find the compo- 
nents of the velocities, the pressures, and the densities in regions 2-4. There are 12 rela- 
tionships on the shock waves AB, BC, and BE. Also, the problem contains 6 unknown quantities 
~, ~, ~i, ul, ~, Pl, for which there are additional defining conditions. Here ~4 is the angle 
formed by wave BE and the direction of the gas velocity vector in region 4, while ux and v~ 
are the components of qx along the x and y axes in the coordinate system linked to the lead- 
ing edge of the wedge. 

Geometrical considerations show that B is expressed as 

6=180 ~ ~ ~. (1.1) 
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TABLE i 

q,=2,52; 1~I~=2,~ ; ~0=l.i; ~:,=1,4; 0~ t0 : ;  ~=31.8 = 

p,= t 
p~ = t,72 
p ~  = 1,72 
p~ = t,g2 

p1= t,38 q l =  2,54 
p2 = 2,02 q ~ =  2,36 
Pa---- 1,63 qs---- 2,36 
p ; =  t,55 q ~ =  2,31 

m = 4 0 , 9  ~ ~ =  t07,3 ~ 

0~= --1,45" 
02= I0 ~ 
Os= 10 ~ 
04 = 10 ~ 

The condition that wave BE is perpendicular to the surface of the wedge gives us as 
follows for w~: 

~4=90~ (1.2) 

where e~ is the deviation angle of the flow behind wave BC. 

Apart from these two geometrical relationships, four further conditions related to the 
geometrical and gasdynamic characteristics of the flow should be obeyed at the contact sur- 
faces BD and BF. 

Firstly, the velocities qo and q, cannot take arbitrary values, and on BD the normal 
components of these should be equal. In the coordinate system linked to the tip of the 
wedge, this is equivalent to the condition 

~ s i n ( ~  -- 0:) = ~ s i n  ~, (1.3) 

where 8~ = a~tg u/v,. 

Secondly, the condition for equality of the pressure should be obeyed at the contact 
surface: 

P2 = Ps- (1.4) 

Thirdly, the condition for parallelism of the flows should be obeyed on this: 

~ _ ~ = ~, (1.5) 

where B2 and B3 are the flow deviation angles behind the waves AB and BE. 

Fourthly, the velocities in regions 2 and 3 should be equal: 

~2 = ~s. ( i .  6) 

Equations (1.1)-(1.6) together with the relationships describing the transition to the 
shock waves AS, BC, and BE constitute a complete mathematical solution for the interaction 
of a moving wedge with a boundary between two media, i.e., the configuration of the interact- 
ing waves and contact surfaces is completely defined for given parameters ?0, ?i, ~, 8, P0, 00, 
and the density, velocity, and direction of the velocity in region i are also determined. 

2. Consider the solution to (1.1)-(1.6). Equation (1.4) is equivalent to 

where 5 and n (with the corresponding subscripts) denote the intensity of the corresponding 
shock wave and the density ratio at it, 

~'o - -  t .  %', - -  1 $~'1;. 
lao = :-.--!--~_, ~, ~ = - - "  hI~ = 

"i o - r  t %'1 + I '  1'o ~ ' 

~r p_/_4 ___ ~4 .--' Po.-. -4 . . ( 41 
131 ~41~o+1' q ~ =  q ~ s m ' t ~  c t g  2 o ) +  II$1" 

In (1.1)-(1.6) and (2.1) and subsequently, the velocities and angles are taken in the 
coordinate system related to point B if no special mention is made. 

Equation (1.5) is transformed to 

tg~(~ 4-~:) = tg ,% (~3 --1) (2.2) 
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Fig. 2 

The condition for equality of the velocities in regions 2 and 3 gives an additional re- 
lation between the velocities in regions 0 and I: 

Using (1.2) and (2.1), we reduce (2.2) to a transcendental equation for the unknown ~, 
whose roots represent a complete solution. The quantities p, and q, are found from (2.3) 
and the left part Of (2.1). To find the direction and magnitude of q~ in the coordinate 
system linked to ~he tip of the wedge, we use condition (1.3). 

The roots of (2.2) were found numerically by a computer. We considered a wide range in 
the initial parameters: i.i~0; ~,~2.1;L4~qo~4; I0~ ~ . The steps in Yo and Y~ 
were 0.i, while qo was about 0.5 and the wedge angle was about i0 ~ . In the calculations it 
was found that this exact solution applies only for 71 > 70, In fact, the right side in 
(2.2) is always positive, and therefore we should have 

~' -- ~' = ~-~0 + ~ ~4~ ~ I > 0. 

This is equivalent to 

- ( - t )  + l ,  ( i  - ( i  - > o .  ( 2 . 4  ) 

The second term in (2.4) is always less than zero, and therefore if this is to be obeyed 
the first term must always be greater than zero, which is possible only for ~ t ~ > ~ t  o or 

V,>~0. 

Figures 1 and 2 show the general picture for the interaction of the moving wedge with 
the boundary between the two media. Note that for convenience in representation, the entire 
flow picture in Fig. 2 has been turned through 30 ~ clockwise. The values of the gas-dynamic 
quantities for these two forms are given in Tables 1 and 2, where the first line gives the 
initial parameters and the velocities have been calculated in the coordinate system linked 
to the wedge tip. 

The arrows in Figs. 1 and 2 show the directions of the velocity vectors in regions 0-4 
in the mobile coordinate system. The deviation angles for the velocity vectors in Fig. 1 
are ~ =I0.8 ~ ~=I.~, ~= 11.75 . With the stronger shock wave in Fig. 2, these deviations 
are more substantial: ~ = 204 ~, 83 = 8-8~ 84 = 29-2~" The calculations show that the inten- 
sity of wave BE is fairly small for a thin wedge, but it increases with 71, go-O ; 8 varies 
over the range 75-i15~ in the above range for the initial parameters. 

Figures 3 and 4 show the behavior of P3/P~ as a function of the Mach number of the in- 
cident flow and T,. Curves 1-3 relate to wedge thickness 0 = I0;20;30 ~. In Fig. 3, the 
fixed parameters are 7o ~ 1.1 and 71 = 1.9. while in Fig. 4 they are To = I.i and Mo= 2.4. 

We see that when a strong wave falls on the interface between two gases, the intensity 
of wave BE increases by a factor 1.75. 
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TABLE 2 

q,=2,52; M,=2,~: ~,'o=l,l; V:=I,9; 0=30:; q~=51,8 ~ 

P l :  j 
p2= 5,19 
pa=5 . t9  
p4=3,68 

p l =  3.t5 
p2= 6.62 
p3 = 4.33 
pa= 3.18 

ql = 2.47 
q:~ = 2,03 
qs = 2,03 
qa = 1,68 

(o ---- 49,6:, ~ = 79,8 ~ 

01----- --11.7 ~ 
0== 30 o 
Os=30 ~ 
04= 305 

l e  

2.  

3.  

4 .  

5 .  

6.  

e 

8.  

9. 

1~ 75 

~,oo 1,, 
~,5 7,2 

Fig. 3 Fig. 4 
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